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Quadrature Methods for Integral Equations of 
the Second Kind Over Infinite Intervals 

By Ian H. Sloan 

Absact. Convergence results are proved for a class of quadrature methods for integral 
equations of the form y(t) = f(t) + f ' k(t, s)y(s) ds. An important special case is the 
Nystrom method, in which the integral term is approximated by an ordinary quadrature 
rule. For all of the methods considered here, the rate of convergence is the same, apart from 
a constant factor, as that of the quadrature approximation to the integral term. 

1. Introduction. In this paper we analyze a general class of quadrature methods 
for integral equations of the form 

,~00 

(1.1) y(t) = f(t) + J k(t, s)y(s) ds, 

under suitable conditions on the kernel k and the inhomogeneous term f. It is 
assumed throughout that the corresponding homogeneous equation has no nontriv- 
ial solution. 

A similar analysis can also be made for integral equations on the interval 
(-oo, oo). The corresponding results can easily be written down by adapting the 
results of this paper. 

The approximation methods to be considered in this paper are all characterized 
by an approximate equation of the form 

(1.2) Yn(t) f(t) + E Wni(t)Yn(Sni) 

where sn, . . . snn are distinct points in [0, oo], and Wnl, . .. , Wa, are continuous 
scalar-valued functions on the interval [0, oo). 

The simplest method of this type is the Nystrom method [6], in which the integral 
term of (1.1) is approximated by an ordinary quadrature rule for the interval 
[0, oo). In this case, Wni(t) is simply a quadrature weight multiplied by k(t, sn); see 
Section 4. 

Remarkably, it appears that no analysis of the Nystrom method for an infinite 
interval has ever been carried out. (See, for example, the comment in [3, pp. 
581-582].) Here we first give a general convergence proof and error analysis for 
approximations of the form (1.2), then specialize to the Nystrom method, and 
finally illustrate with two particular quadrature rules: first, Gauss-Laguerre quadra- 
ture, and second, a rule obtained by mapping to a finite interval and then using 
ordinary Gauss quadrature. 
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Any approximation of the form (1.2) is easy to use in practice, once the 
quantities W,,(t) are known. The first step is to set t = s,,, j = 1, . . . , n, to obtain 
the set of linear equations 

n 

2 
- W"i (Snd)IYn(Sn) =f(sj) j = 1, .. . n, 

which may be solved by any convenient method. Then the value of yj(t) at an 
arbitrary point t may be obtained by the direct use of (1.2). 

A previous paper by Atkinson [2] is also concerned with the integral equation 
(1.1), but is devoted to a different method of approximation, namely that obtained 
by cutting off the infinite interval at an upper limit R and then letting R -o o. In 
practice, the resulting equation for the finite interval must then be solved ap- 
proximately for a sequence of values of R, usually by conventional quadrature 
methods. In our opinion, the direct application of quadrature methods over the 
infinite interval is usually preferable under the conditions assumed in the present 
paper. On the other hand, Atkinson's analysis covers cases that are outside the 
scope of the present work: in particular, it covers equations of the Wiener-Hopf 
type (i.e. k(t, s) = K(t - s)). The restrictions on k in the present work are stated 
below. 

2. A Theoretical Setting. An awkward problem when considering equations over 
infinite intervals is the choice of the space of functions within which the solution y 
is to be sought. In the present work we assume that y and f belong to the space Cl, 
the space of continuous functions on [0, oo) having a limit as t - oo. If g E Cl, 
then g(oo) denotes lim g(t) as t - oo. The space Cl is equipped with the norm 

11 gloo = sup I g(t)j. 
te[O,oo) 

With this norm it is a Banach space, since it is a closed subspace of the Banach 
space C of all bounded continuous functions on [0, oo). The notation Cl is that of 
Corduneanu [4]. 

We shall assume that the kernel k satisfies the conditions 
t00 

(2.1) flk(t s)l ds < oo 

and 
00 

(2.2) lim flk(t', S) - k(t, s)l ds =0 
t'-t 0 

for all t E [0, oo), and also the condition 
t00 

(2.3) lim sup f Ik(t', 5) - k(t, s)l ds = 0. 
t- ?? t' > t? 

We shall see below that a consequence of these conditions is that 
t00 

(2.4) sup flk(t. s)l ds < oo, 

and from this it follows easily that kernels of the form k(t, s) = K(ts) are excluded. 
Also, the third condition can easily be seen to exclude kernels of the Wiener-Hopf 
form k(t, s) = K(t - 5). 
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The properties assumed for the kernel are motivated by the following result: 

LEMMA. The integral operator K defined by 

Kg(t) = f k(t, s)g(s) ds, g E Cl, 

is a compact operator from Cl to itself if and only if (2.1), (2.2) and (2.3) hold. 

It follows from the lemma, and from the Fredholm alternative, that (1.1) has a 
solution y C Cl for each f C Cl. It also follows that I - K, where I denotes the 
identity operator, has a bounded inverse on Cl. (The latter is a stability property, 
since it ensures that small changes in f produce only small changes in y.) 

Proof of Lemma. (4=) Assume that (2.1), (2.2), and (2.3) hold. We first prove that 
K maps Cl into itself. If g C Cl and t', t E [0, oo), we have 

jKg(t') - Kg(t)j = f [k(t', s) - k(t, s)] g(s) ds 

00 
< Ik(t', s) - k(t, s)j dsll gIl. 

The last line converges to 0 as t' -* t by virtue of (2.2), hence Kg is continuous on 
[0, oo). Similarly, by virtue of (2.3), we have 

lim sup IKg(t') - Kg(t)j = 0, 
t?+ t'>t 

from which it follows that Kg(t) has a limit as t - oo. Thus, Kg E Cl. 
Next, we show that K is a bounded operator on Cl. It is easily seen that 

IIKiI = IIKIIOO, where K(t) = fO Ik(t, s)I ds. Now it follows, with the aid of elemen- 

0 tar-y inequalities, that 

|K(t') - K(t)j < f |k(t', s) - k(t, s)j ds, 

hence, from (2.2) and (2.3), we deduce K E C,. Hence, IIKIIO < X, and therefore 

IKI < oo . (Note that the boundedness of K is equivalent to (2.4).) 
To show that K is compact, we must show that K maps the unit ball in Cl into a 

relatively compact set, i.e. into a set with compact closure in Cl. Therefore a 
necessary first step is to identify the relatively compact subsets of Cl. 

Adapting an argument of Atkinson [2], we may identify the relatively compact 
subsets of Cl by observing that the map T: C[O, 1] -- Cl, defined by Th(t) = 

h(t/(l + t)) for t E [0, oo), is an isometric isomorphism. Thus, the relatively 
compact subsets of Cl are simply the images under T of the relatively compact 
subsets of C[O, 1]. But by the Arzela-Ascoli theorem, the latter are just the 
bounded, equicontinuous subsets of C[O, 1]. 

We recall that a subset S c C[O, 1] is equicontinuous if, given e > 0, there exists 
8 > 0 such that jh(x') - h(x)l < e for all x', x E [0, 1] satisfying [x' - xl < 8, and 
all h E S. It is also useful to recall (see, for example, [7, p. 94]) that S is 
equicontinuous on the compact interval [0, 1] if and only if it is equicontinuous at 
each point of [0, 1], i.e. if and only if given e > 0 and x E [0, 1], there exists 8(x) 
such that jh(x') - h(x)l < e for all x' E [0, 1] satisfying [x' - xl < 8(x), and for all 
h E S. 
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We deduce from the preceding two paragraphs that a subset of Cl is relatively 
compact if and only if it is uniformly bounded, equicontinuous at each point 
t E [0, oo), and equiconvergent at oo. (A subset of Cl is equiconvergent at 0o if, 
given e > 0, there exists T > 0 such that I g(t) - g(oo)l < e for all t > T and all g 
in the subset.) 

Thus, if B denotes the unit ball in Cl, the operator K is compact if and only if the 
set KB is equicontinuous at each point of [0, oo) and equiconvergent at 0o. To 
establish those properties, let g E B and t', t E [0, oo), and consider 

p00 

jKg(t') - Kg(t)l = J [k(t', s) - k(t, s)] g(s) ds 
00 

< fjk(t', s) - k(t, s)j ds. 

Then the equicontinuity of KB at the point t E [0, oo) follows from (2.2), and the 
equiconvergence at oo follows from (2.3). Thus, the compactness of K is proved. 

(=X) Now assume that K is a compact operator from Cl to itself. Since K, in 
particular, maps the function g(t) =1 into a function in Cl, the integral 
f k(t, s) ds must be continuous in t and hence exists as a finite number for all 
t E [0, oo). Since a measurable function h is Lebesgue integrable only if jhl is 
Lebesgue integrable, it follows that f 'Ik(t, s)I ds also exists as a finite number for 
all t E [0, oo). Thus, (2.1) is proved. 

Also, because K is a compact operator, the set KB is equicontinuous at each 
point of [0, oo) and also equiconvergent at oo. From the first it follows that 

(2.5) lim sup IKg(t') - Kg(t)j = 0 
t'+t gEB 

for all t E [0, oo), and from the second that 

(2.6) lim sup sup IKg(t') - Kg(t)j = 0. 
t-OO t'>t gEB 

But it is easily seen that 

sup IKg(t') - Kg(t)j = flk(t', s) - k(t, s)l ds, 
geB 0 

hence (2.2) and (2.3) follow immediately from (2.5) and (2.6). Q.E.D. 

3. Convergence Theory. We shall assume that the quantities W,, in (1.2) satisfy 
the following three conditions: 

n 0 

(3.1) lim > W"i(t)g(sni) = k(t, s)g(s) ds 
n --boo 

for all g E Cl and all t E [0, oo); 

n 

(3.2) lim sup | Wni(t') - Wi(t)I = 0 

for all t e [0, oo); and 
n 

(3.3) lim sup sup E | Wni(t') - Wni(t)j O. 
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The properties assumed above ensure that the approximate integral operators K, 
defined for n > 1 by 

n 
Kng(t) = E Wni(t)g(sni), t E[0, mo), 

i=l1 

are well behaved in the following sense. 

LEMMA. The sequence { Kn} is a collectively compact set of operators from Cl to 
itself, with the property that IKng-Kg - 0 as n -* oo for all g E C1, if and only 
if (3.1), (3.2), and (3.3) hold. 

The lemma is proved below. Given the lemma, the following convergence 
theorem, which is the foundation for all of the results of this paper, is a direct 
consequence of Anselone's collectively compact operator approximation theory; 
see [1, Theorem 1.6]. For it follows from the latter that the operators (I -Kn)- 
exist and are uniformly bounded for all n sufficiently large, and the error estimate 
in the theorem then follows from the identity 

Yn- y = (I - Kn) )(Kny - Ky) 

THEOREM 1. Given (2.1)-(2.3) and (3.1)-(3.3), there exists nO > 1 such that Yn 
exists and is unique for all n > nO. Moreover, Yn converges uniformly to y, and there 
exists c > 0 such that 

Ilyn - Ylloo < CIIK,y - KyIloo 

for all n > nO, 

The importance of this theorem lies firstly in the fact that it establishes the 
existence of the approximate solutionyn for all n sufficiently large, and secondly in 
the guarantee that it provides for the rate of convergence: it assures us that the rate 
of convergence is the same, apart from a constant factor, as that of the quadrature 
approximation I Wn,(t)y(sn,) to the integral term of (1.1). 

Proof of Lemma. (4=) Assume that (3.1), (3.2) and (3.3) hold. We first show that 

Kn maps C, into itself. If g E C, and t', t E [0, oo), then 

n 

nK,g(t') -Kng(t)j = E [ Wni(t') - Wni(t)] g(Sni)) 
i=1 

n 

< E IWni(t') - Wni(t)j 11g10, 
i=l 

the right-hand side of which converges to zero as t' -- t for all t E [0, co) by virtue 
of (3.2). Hence, Kng is continuous on [0, oo). Similarly, Kng(t) has a limit as t o-* 

by virtue of (3.3). Hence, Kng E Cl. 
Next, we show that Kn is a bounded operator on C,. It is easily seen that 

IIKn,11 = sup Kln(t) = IlKn1looE 
tE[O,oo) 

where 
n 

Kn (t) = E I Wni(t)1. 
i=1 
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Now, from (3.2) and (3.3) it follows, by an argument similar to that in the 
preceding paragraph, that Kn E Cl. Hence, I I K,, I = I I K,,I I I < ??. 

We recall that the set { K, } of bounded linear operators on the Banach space Cl 
is collectively compact in the sense of [1] if the set S, defined by 

(3.4) S= K,,g:gEB,n > 1}, 

is a relatively compact subset of Cl. (Here B is the unit ball in Cl.) From the 
discussion in the preceding section, we may deduce that the set (K,,} is collectively 
compact if S is bounded, equicontinuous at each point t E [0, oo), and equiconver- 
gent at oo. 

To prove the equicontinuity and equiconvergence properties of S, let g E B and 
t, t E [0, 0), and consider, for m > 1, 

m 

IKm,g(t' )- K,g(t)| Wmi(t' )- Wmi(t)] g(sm)| 

m n 

< I8 I W,mi(t') - Wmi(t)I < SUp E I Wni(t') - Wni(t)I 
i=1 n i-i 

The right-hand side is independent of m and of g, and converges to zero as t' -> t 

by virtue of (3.2). Hence, S is equicontinuous at each point t E [0, 00). Similarly, 
by virtue of (3.3), S is equiconvergent at oo. 

Next, we seek to show that for all g E Cl we have Kng - Kg 0 as n -* 0. 

Now, (3.1) tells us that Kng(t) -- Kg(t) for all t C [0, 0o), and hence it only remains 
to prove that this convergence is uniform. It is known (see, for example, [1, p. 7]) 
that pointwise convergence of an equicontinuous family on a compact interval is 
sufficient to ensure uniform convergence. It follows that pointwise convergence on 
the interval [0, oo) of a family that is equicontinuous at each point of [0, oo) and 
equiconvergent at oo is sufficient to ensure uniform convergence. (This may be 
deduced by using the previously noted isomorphism between C, and C[O, 1].) But 
the equicontinuity and equiconvergence properties have already been established 
for the sequence { Kng). Hence, we conclude that 

(3.5) lim K,g - Kglloo = 0 

for all g E C1. 
Finally, we show that the set S is bounded. From (3.5) we have 

sup IIKngjloo < t 
n 

for all g E C,, hence, since { Kn) is a sequence of bounded operators on the Banach 
space C,, it follows from the uniform-boundedness (Banach-Steinhaus) theorem 
that 

sup jlKn,l < 00. 
n 

The left-hand side is a bound for the set S. Thus, S is bounded, equicontinuous at 
each point of [0, oo), and equiconvergent at oo, and therefore relatively compact. 
Hence, the set (Kn) is collectively compact. 

(=X) Assume that (Kn) is collectively compact, and that IIKng - Kgj II 0 as 
n -> oo for all g E C,. The second property implies (3.1). The first implies that the 
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set S, defined by (3.4), is equicontinuous at each point of [0, oo), i.e. 

(3.6) lim sup sup IK,g(t') - Kg(t) = 0 
t fn gE=B 

for all t E [0, oo), and also that S is equiconvergent at oo, from which it follows 
that 

(3.7) lim sup sup sup lKng(t') - Kg(t) = 0. 
too+0 t'>t n g E-B 

But it is easily seen that 
n 

sup IKng(t') -Kg(t)l = E I Wni(t') - Wni(t)1v 
g EB i=1 

Hence, (3.2) and (3.3) follow immediately from (3.6) and (3.7). Q.E.D. 

4. The Nystrom Method. In the Nystr6m method [6], one approximates the 
integral term of (1.1) by a quadrature rule of the form 

oo n 

(4.1) | z(s) ds ':Z: 
(WniZ(Sni)' 

Specific examples of such quadrature rules are discussed in the following two 
sections. 

With the integral term of (1.1) approximated by (4.1), it is clear that one does 
indeed obtain an approximation of the form (1.2), with Wni now given by 

(4.2) Wni(t) = wnik(t, sni). 
The Nystrom method can be brought within the scope of Theorem 1 if the rule 

(4.1) has the property that 

n 00 

lim E onik(t, sni)g(sni) = J k(t, s)g(s) ds 

for all t E [0, oo) and all g E Cl. In words, the property is that the rule (4.1) should 
converge to the exact result when the rule is applied to the integral term of (1.1) 
with y replaced by any function g E Cl. If that property holds, and if k satisfies 
certain conditions, then Theorem 1 is applicable. 

To allow us to specify the conditions on k, it is convenient to introduce a 
function H E L1(0, oo) having the property that 

n 00 

(4.3) lim 1 wnjH(snj)g(sni) = J H(s)g(s) ds 

for all g E Cl. (A function H with this property certainly exists, since we may take 
H(s) = k(to, s) for fixed to E [0, oo). In practice one should choose an H that 
approaches zero as slowly as possible as s -> oo.) 

Let us now define 

(4.4) rt(s) = r(t, s) = k(t, s)/H(s). 

We shall show that for Theorem 1 to be applicable it is sufficient that rt satisfies 
each of 

(4.5) rt E C1 
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and 

(4.6) lim lIrt, - rtlII = 0 

for all t E [0, oo), and also 

(4.7) lim sup II rt, - rtI o = 0. 
t-* o00 o , 

To show the sufficiency of (4.5) to (4.7), first note that, because k(t, s) = 

H(s)rt(s), the properties (2.1), (2.2), and (2.3) that must be satisfied by the kernel 
follow immediately from (4.5), (4.6), and (4.7), respectively. 

Next, it follows from (4.2) and (4.4), for g E C, and t E [0, oo), that 
n n 

lim E Wji(t)g(s,i) = lim nik(t, sn)g(sn,) n i=1o n --*0 

n 
= lim E nH(snj)rt(snj)g(sni) 

00 c* 
= f H(s)rt(s)g(s) ds = f k(t, s)g(s) ds, 

where we have used the property (4.3) to evaluate the limit (that property being 
applicable because rtg E C,). Hence, (3.1) is satisfied. 

Finally, if t', t E [0, oo), we have 

Wni(t') - Wni(t) = wnjH(sni)[r(snj) - rt(s,)], 
so that 

n n 

(4.8) > I Wni(t') - Wni(t)l < I JwnjIjH(snj)jjjrt1 - rtilI 
(4.8)i=1i=1 

< Mjllrt - rtIIo 

where 
n 

M = sup w kXniIH(sni)I 
n 

That M is finite follows from observing that the left-hand side of (4.3) is the limit 
of a sequence of bounded linear functionals on the space C, and then invoking the 
uniform-boundedness theorem. Then, by using (4.8), we may deduce the desired 
properties (3.2) and (3.3) from the respective assumptions (4.6) and (4.7). 

Since all the conditions of Theorem 1 have now been established, the following 
result is a corollary of Theorem 1. 

COROLLARY 1. Assume that H E LI(O, oo), and that the limut (4.3) holds for all 
g E C,. Moreover, assume that the function rt, defined by rt(s) = k(t, s)/H(s), 
satisfies (4.5), (4.6), and (4.7). Then the conclusions of Theorem 1 hold for the 
Nystrom method based on the quadrature rule (4.1). 

5. Gauss-Lagueffe Quadrature. To illustrate the Nystrom method, we first con- 
sider the case of Gauss-Laguerre quadrature; see, for example, [5, p. 173]. The rule 
may be stated as 

oo n 
(5.1) f e-u(s) ds 2 E Wu(sJ9), 

? ~~~i=l 
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where s,... , Snn are the zeros of the nth degree Laguerre polynomial L"(s), and 
the weights pni are such that the rule is exact if u is any polynomial of degree < 2n. 

The rule can easily be expressed in the form (4.1), by setting z(s) = e`su(s). The 
weights ,ni in the rule (4.1) are then given by w,ni = plni exp(sa). 

A sufficient condition for convergence of the Gauss-Laguerre rule to the exact 
integral (see [12, p. 559]) is that u in (5.1) be continuous on [0, oo), and satisfy 

Ju(s)l < Mesls+e. s E [0, 00) 

for some positive numbers M and E. 
It follows that for the case of Gauss-Laguerre quadrature we may choose the 

function H of the preceding section to be 

H(s) = (1 + s)- 

where E is an arbitrary positive number-for the convergence result in the preceding 
paragraph then assures us that the limit property (4.3) holds for all g E C,. We 
deduce the following as a special case of Corollary 1. 

COROLLARY 2. Assume that for some positive number E the function r, defined by 
re(s) = (1 + s)l+ek(t, s), satisfies (4.5), (4.6), and (4.7). Then the conclusions of 
Theorem 1 hold for the Nystrom method based on Gauss-Laguerre quadrature. 

As a numerical example, we consider the integral equation 

(5.2) y(t) = f(t) + 2 + 2 y(s)ds, 

with 

(5.3) f(t) = 1 - - (t2 + 
t2 + 1 2!L..[ 

the exact solution of which is 

t2 + 1 

It is clear thatf E C,. Moreover, it can be shown that the function 

r,(s) = (1 + S)3/2(S2 + t2 + 1)- 

satisfies (4.5) to (4.7), thus the conditions of Corollary 2 are satisfied with E = 1/2. 
Numerical results for this example are shown in Table 1. Evidently, the rate of 

convergence is rather slow. The reason is not hard to find: the convergence result 
above only asserts that the rate of convergence of y,n to y is the same, apart from a 
constant factor, as that of the Gauss-Laguerre quadrature rule applied to the 
integral term of (1.1); but the Gauss-Laguerre rule is not at all appropriate for this 
particular integral, because the integral does not have an exponentially decaying 
character. In fact, for such an integral, with an integrand of rational character, it is 
probably better to proceed as in the following section, by transforming the integral 
to a finite interval and then using an ordinary quadrature rule. 
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TABLE 1 

Error norms for the Nystrom method with Gauss-Laguerre quadrature 

n Error norm 

4 0.20 
9 0.18(-1) 
12 0.53(-3) 
15 0.19(-2) 
18 0.61(-3) 
21 0.33(-4) 

6. Mapping to a Finite Interval. Again the Nystrom method is used, but this time 
the quadrature rule (4.1) is obtained by transforming the integral to a finite interval 
and then using an ordinary quadrature rule. To be definite, let us use the change of 
variable formula 

x 

so that the integral becomes 

(6.2) f z (s) ds f ( x1 (l dx 

and for the quadrature rule over the interval [0, 1] let us use ordinary Gauss 
quadrature. 

Then the right-hand side of (6.2) is approximated by the Gauss rule 

(6.3) m(x) dx n m(XJ) 

O ~~~~i=l1 

where xn, I .. ., xnn are the zeros of the nth degree Legendre polynomial shifted to 
[0, 1], and the weights px,i are such that the rule is exact if m is any polynomial of 
degree < 2n. On combining (6.2) and (6.3), the quadrature rule for the infinite 
integral becomes 

oo n f z(s) ds Z niZ(Sni)9 
O ~~~i=l 

where 

Sni = and wn = (I 

To apply the convergence result of Section 4, one needs to specify the function 
H. The Gauss quadrature rule (6.3) is known to converge to the exact result as 
n -+ oo for all m E C[0, 1] (see [5, p. 99]), hence a possible choice for H is 

H(s) = (1 + S)-29 

for it can easily be seen that the property (4.3) then holds for all g E Cl. However, 
if we make that choice for H in Corollary 1, then it turns out that the correspond- 
ing conditions on the kernel are somewhat restrictive and are in fact not satisfied 
by a particular integral equation that we wish to consider (namely (5.2)). 
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The condition on the kernel can be weakened if we take advantage of the fact 
(see [8]) that Gauss quadrature converges even for certain functions with endpoint 
singularities. Precisely, the following result, which is a slight extension of a result in 
[8], proves to be useful for our purposes: 

LEMMA. The Gauss quadrature rule (6.3) converges to the exact result as n - oo if 
m is of the form 

(6.4) m(x) = p(x)( -XT 

where p is bounded and continuous on the interval [0, 1), and T < 1. 

Proof. Let m be given by (6.4), and let In(m) denote the Gauss quadrature rule in 
(6.3) and I(m) the exact integral. To prove that I(m) -> I(m) as n - oo, let E > 0 
be given, and then choose 8 > 0 so that 

f'1 (I - x) - dx < c/66p11jp I 

where the integral on the left is an improper integral if 0 < T < 1. Now let us 
decompose m into two pieces ml and M2, defined by 

ml(x) =(O x >1-> 

and 

m2(x) = m(x) - m(x). 

Then ml is piecewise continuous on [0, 1], so it is certainly true (see [5, p. 102]) that 

I(ml) -> I(ml). Thus, for all n sufficiently large, we have 

VIn(ml) -I(ml)l < E/2. 

On the other hand, 

In(m2) - I(m2) S IIn(m2) + II(m2)I 

n 

2 = MX) + )fm2(X) dx 

i-i~~~~~~tn 

IIPI[x m 1 (1Xo + f 1 _), dx]. 

Now it follows from a theorem of Rabinowitz [8] that the Gauss rule converges to 
the exact result for the particular function (1 - x)', hence it also converges to the 
exact result for the same function multiplied by a step function. Thus, for all n 
sufficiently large, we have 

1 (m) - I(m2)I < IIPI[2f 2 (1 dx + f dx] 

<E/2 

Since m = ml + M2, for all n sufficiently large we have 

n(m) - I(m)A < E 

and the proof of the lemma is complete. Q.E.D. 
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We may now choose the function H of Section 4 to be 

H(s) = (1 + s)--e, 

where E is any positive number, since the necessary convergence property (4.3) then 
follows from the lemma. The following result, which closely parallels Corollary 2, 
may then be obtained as a special case of Corollary 1. 

COROLLARY 3. Assume that for some positive number E the function r,(s)= 
(1 + s)' +ek(t, s) satisfies (4.5), (4.6), and (4.7). Then the conclusions of Theorem 1 
hold for the Nystrom method, if the quadrature rule is obtained by the change of 
variable (6.1), followed by Gauss quadrature. 

For a numerical example, we again consider the integral equation defined by 
(5.2) and (5.3). The conditions of the corollary, as noted in the preceding section, 
are then satisfied with E = 1/2. 

The numerical results, given in Table 2, display much faster convergence than 
the Gauss-Laguerre results of Table 1. The reason is clear: the present quadrature 
rule is far more appropriate than the Gauss-Laguerre rule for the integral term of 
this particular integral equation. 

TABLE 2 
Error norms for the Nystrom method based on mapping to 

finite intervalfollowed by Gauss quadrature 

n Error norm 

4 0.16(-1) 
8 0.19(-4) 
12 0.34(-6) 

7. Conclusion. In this paper a convergence proof and error analysis has been 
given for the Nystrom method for an integral equation of the second kind over an 
infinite interval. Two particular examples of the Nystrom method have been 
discussed in detail, namely that based on Gauss-Laguerre quadrature, and that 
based on mapping the infinite interval to a finite interval and then using Gauss 
quadrature. 

The main convergence result, Theorem 1, also covers a much more general class 
of approximation methods, including those based on the use of product-integration 
rules for the integral term of (1.1). (For a general discussion of product-integration 
rules see [9].) However, we have not discussed any applications of this kind in the 
present work, for the very good reason that there are apparently not yet any useful 
convergence results for product-integration rules over infinite intervals (except for 
those obtained, as in [9], by transforming finite-interval rules). Nevertheless, such 
results are expected to be available in the future, perhaps in the style of the 
finite-interval results of [11], and Theorem 1 is then expected to be applicable. It is 
likely that the direct application of Theorem 1 to such cases will prove cumber- 
some, but that a further development of the theory, in parallel to one given for the 
finite-interval case in [10], will make the application to product-integration rules 
over infinite intervals quite straightforward. 
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